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PREFACE

This study was initiated as Subtask 3, Orbiting Propellant Depot Safety Study

of NASA Study C-II, Advanced Missions Safety Studies. Other studies in this

series are: (i) Subtask 1, TNT Equivalency Study, Aerospace Report No.

ATR-71(7233)-4; and (ii) Subtask 2, Safety Analysis of Parallel versus

Series Propellant Loading of the Space Shuttle, Aerospace Report No.

ATR-71i(7233)- 1.

The study was supported by NASA Headquarters and managed by the Advanced

Missions Office of the Office of Manned Space Flight. Mr. Herbert Schaefer,

the Study Monitor, provided guidance and counsel that signifantly aided this

effort.

Study results are presented in three volumes; these volumes are summarized

as follows:

Volume I: Management Summary Report presents a brief, concise
review of the study content and summarizes the principal conclusions
and recommendations.

Volume II: Technical Discussion provides a discussion of the
available test data and the data analysis. Details of an analysis
of possible vehicle static failure modes and an assessment of
their explosive potentials are included. Design and procedural
criteria are suggested to minimize the occurrence of an explosive
failure.

Volume III: Appendices contains supporting analyses and backup
material.
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1. INTRODUCTION

1. 1 GENERAL

Under consideration are orbital missions that require the use of orbiting

vehicles, e.g., a cislunar shuttle, that is either chemically or nuclear pro-

pelled, functioning as orbit-to-orbit shuttles combined with space tugs for

servicing earth-orbiting payloads. The flight frequency of these space-based

vehicles may require that large quantities of propellants will have to be

delivered to orbit for their use.

Orbiting propellant depots (OPD), in both geocentric and selenocentric orbits,

are being considered as candidate methods of making the required propellants

readily available.

This report presents the results of a top level study assessing the gross

requirements and concomitant safety hazards associated with the operation of

several configurations of the OPD. A qualitative cause-and-effect approach

was employed throughout the study, and no consideration was given to the

probability of a particular failure's occurring. The reader is reminded that

the identification of safety hazards and their rectification are an iterative

process and that a further safety evaluation should be performed after the OPD

will have been better defined.

1. 2 STUDY OBJECTIVES

The objective of this study was to establish design, operation, and emergency

procedure guidelines, criteria, and requirements for the OPD and its operation.

1. 3 STUDY SCOPE

The objective of this study was to analyze the potential safety hazards of an OPD

in geocentric or selenocentric orbit and the hazardous interactions between the

OPD Propellants Depot and transient space vehicles such as Space Shuttles and

Space Tugs.
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GROUND RULES AND CONSTRAINTS

The ground rules and constraints utilized throughout this study included:

a. The OPD must be capable of unmanned operation but be
safe for servicing manned vehicles.

b. The OPD is to be composed of components within the size
and weight limitations of the Space Shuttle payload bay.

c. The conceptual designs will not require significant advance-
ment in the state of the art.

d. The OPD will service one User OV at a time and will be the
active vehicle during transfer operations, i. e., will supply
power, guidance, acceleration, etc.

e. All docking points will be part of a universal docking
mechanism which will be common to all using vehicles.

f. Propellants will be stored at the conditions (temperature and
pressure) required by the vehicles to be serviced.

g. The quantity of propellants transferred will be measured by
the OPD.

h. Only series transfer of propellants will be possible.

i. Resupply of the OPD will be accomplished via a Space Shuttle.

j. No propellants will be returned to earth.

1.5 STUDY PLAN

1. 5. 1 Approach

The principal steps in the study included:

a. Development of conceptual OPD configurations to the level
required to serve as the baseline for a top-level hazards
analysis.

b. Development of top-level functional flows for each
configuration.

c. Performing a gross hazards analysis based on the top-level
functional flows.

d. Assessment and comparison of the levels of safety inherent
in the concepts.

e. Provide recommendations as to safety requirements for
normal and emergency operation.

1-2
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1. 5. 2 Resources/Data Base

Since the study was primarily a hazards analysis, NASA and contractor

technical reports, documents, and briefings were utilized to the maximum

extent possible in establishing the OPD configurations. The reports were also

utilized in selecting subsystems and defining their modes of operation. Refer-

ences to the specific reports actually utilized or reviewed are given throughout

this volume in the pertinent sections to which they apply.
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2. CONCEPTUAL OPD CONFIGURATIONS

2. i1 GENERAL

Before the hazards analysis could be performed, several conceptual con-

figurations of the OPD had to be considered; existing data were used

whenever possible. It was intended that the configurations be defined only to

the extent necessary to support a top-level hazards evaluation.

The following paragraphs describe, in gross terms, the major structural

and operational aspects of the conceptual OPD configurations evaluated in this

study.

2.2 INTEGRAL CONCEPT

2. 2. 1 Structural

An integral configuration of the OPD is illustrated in Figure 2- 1. In this

concept, the cryogenic propellant storage tanks, LO
2

and LH2, are a per-

manent part of the OPD structure. Although large single tanks are shown

for each propellant, an acceptable alternate would be a series of intercon-

nected smaller tanks. Another tank configuration would incorporate a single

large common bulkhead-type storage tank that would contain both propellants;

this tank configuration was excluded from the study since a single failure in

the common bulkhead would allow the propellants to mix.

The subsystems required to operate the OPD were assumed to be integrated

with the tank structure; the subsystems that would be used to dispense propel-

lants would be used during OPD resupply operations. The rationale for selec-

tion of specific subsystems and their operations is discussed in greater detail

in Appendix A.
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ALTERNATE CONCEPT

LO2 TANKS

LH2 TANKS

LH2 TANK

SUBSYSTEM
HOUSING

DOCKING
PORT

SUBSYSTEM
HOUSING

* CHARACTERISTICS

i PROPELLANT STORAGE TANKS PERMANENT PART OF
OPD STRUCTURE

i SUBSYSTEMS INTEGRATED WITH TANK STRUCTURE

i ii TANKER OR MODULAR RESUPPLY

Figure 2-1. Integral Concept
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2. 2.2 Operational

2. 2. 2. 1 Resupply

Three methods of resupply were considered in conjunction with this OPD

configuration:

a. Probe and drogue

b. Modular resupply tank

c. Hard dock of resupply OV

The probe and drogue method, Figure 2-2, is similar to that presently

utilized for air-to-air refueling of aircraft. This method eliminates the

requirement for a hard dock and minimizes the effects that instability of one

vehicle would impose on the other. However, this system is the most complex

of the three, both structurally and operationally. Also, the transfer boom is

vulnerable to damage due to excessive motion of either the OPD or the resupply

vehicle.

The modular method, Figure 2-3, of resupply appears to be the most desirable.

In this method, a propellant tank module carried in the payload bay of the

affected resupply OV would be docked to the propellant transfer part of the OPD.

The resupply OV then would retreat to a safe distance from the OPD prior to

the actual transfer of propellants. When the transfer was complete, the resup-

ply OV would remove the empty module and return it to earth for refurbishment.

Hard docking and transferring propellants directly from the resupply OV to

the OPD was excluded from the analysis. The main reasons for this were

potential hazards involved in docking such large vehicles and their relatively

slow reaction times in the event of emergenc(y)(ies) requiring vehicle separa-

tion.

2.2.2.2 User OV Servicing

Propellants would be flow-transferred to the user OV that has docked at the

OPD resupply port. The docking mechanism is discussed in Appendix B.
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DOCKING
PORT

CHARACTERISTICS
i UTILIZATION OF PROPELLANT TRANSFER PROBES

SIMILAR TO AIRCRAFT AIR-TO-AIR REFUELING
ii TRANSFER SUBSYSTEMS CONTAINED IN OPD
iii OV/OPD REQUIRED ACCELERATION DURING TRANSFER

Figure 2-2. Probe and Drogue Resupply, Integral Concept
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CHARACTERISTICS

OV DELIVERS FULL TANK AND STANDS OFF DURING TRANSFER
VIA OPD SUBSYSTEMS

Figure 2-3. Modular Resupply, Integral Concept
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During the period of propellant transfer, all functions, acceleration, stabiliza-

tion, power, flow control, etc., would be supplied by the OPD while the user

OV is quiescent,except that it would monitor operations and provide backup

capability for the more critical subsystems of the OPD.

The propellant transfer procedure utilized in this study is outlined in Table 2-1.

Z. 3 SEMIMODULAR CONCEPT

2.3.1 Structural

Figure 2-4 presents a conceptual semimodular configuration for the OPD. This

configuration would consist of replaceable propellant storage modules and a

central core that would contain the subsystems required for operation of the

OPD. The subsystems contained within the core are identical to those required

to operate the conceptual integral configuration of the OPD.

Spaced along the longitudinal axis of, and at 90 deg intervals around, the cen-

tral core would be a series of manifolded docking ports for propellant storage

modules. LO2 and LH
Z

are contained in separate modules and in discrete

planes: LO
2

modules would be in one plane, and LH 2 modules in the other.

Each docking port would incorporate the interface connectors necessary to

link the propellant modules to the OPD's propellant transfer system. The

docking port interface is discussed in Appendix B.

2.3.2 Operational

2.3.2. 1 Re supply

The conceptual semimodular OPD would utilize a modular method of resupply.

The technique employed in delivering a module to the depot would be the same

as that described in paragraph 2.2.2. i for the modular resupply of the inte-

gral OPD with one notable exception; propellants would not be pumped from

the module to the OPD tanks.

In this configuration, the resupply OV modules would become the onorbit

storage tanks for the depot. Propellants would be pumped directly from the

2-6
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CHARACTERISTICS

i MODULAR OPD WITH CENTRAL MANIFOLDING AND SUBSYSTEMS

ii MODULAR RESUPPLY WITH INTEGRAL TRANSFER TO USER OV

Figure 2-4. Semimodular Concept
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modules to the user OVs. When empty, the modules would be returned to

earth by a resupply OV and recycled.

The semimodular OPD can also function as a modular OPD. To operate in

this manner, it would be necessary only to retract the interface connectors

at the docking ports and utilize the propellant supply modules as will be

described in paragraph 2.4.2. 1.

2.3.2.2 User OV Servicing

Propellants would be transferred to user OVs in the same manner as that

described for the integral OPD in paragraph 2.2.2.2. If the OPD were being

operated in the modular mode, propellant transfer to the user OV would be as

described in paragraph 2.4.2.Z.

2.4 MODULAR CONCEPT

2.4. 1 Structural

The conceptual modular configuration is shown in Figure 2-5. The central core

would contain the propulsion and control subsystems and provide a simplified

docking mechanism for storing the propellant modules. The external profile

of this configuration is identical to the semimodular concepts, but there are

several basic internal differences. There would be no requirement for the

flow transfer of propellants either in or out of the OPD; therefore, there

would be no propellant transfer subsystems, tank manifolding, or complex

interfaces at the docking ports. The OPD, in essence, would be a storage

rack for the propellant modules, each of which would contain both fuel and

oxidizer.

2.4.2 Operational

2.4.2.1 Resupply

Propellant modules would be delivered and docked to the OPD via the Space

Shuttle as shown in Figure 2-4. The docking sequence is discussed in

Appendix C.
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CHARACTERISTICS

MODULAR RESUPPLY AND TRANSFER TO USER OV

ii COMPLETE MODULAR OPD WITH NO PROPELLANT TRANSFER
OR PRESSURIZATION SYSTEMS

Figure 2-5. Modular Concept
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2.4.2.2 User OV Servicing

The user OV would obtain propellants from the OPD by direct tank exchange.

The user OV would store its empty tanks at the OPD in a vacant docking port

and then maneuver to acquire a full tank from the OPD. The empty tank

modules would be recovered by a Space Shuttle for reuse when propellant

deliveries are made.

2.4.3 Alternate Modular Concept

A variation of the modular concept which would minimize some of the dis-

advantages of the original concept for the former would be the addition of

an OPD-mounted boom (Figure 2-6). The boom would perform the entire

propellant tank exchange sequence both to and from the OPD. This concept

would utilize a simple geometrical packaging of tanks in order to minimize

the sequencing and control of the boom mechanism. The sequence would be

pre-programed and controlled from the resupply OV or user OV with manual

override capabilities and, in essence, would be analogous to a remote

manipulator.

The basic advantage over the full modular concept would be that a single

docking sequence would be involved and there would be a minimum payload

penalty to the resupply OV since the provisions for tank exchange aboard that

vehicle would be minimized.

This approach, however, also introduces some new problems. A fully

complex boom or manipulator mechanism would be required. Any malfunc-

tion of this mechanism during the tank exchange sequence could cause severe

damage to the OPD, the resupply OV, and/or the user OV, with potentially

serious, if not catastrophic, safety hazards. From an operational viewpoint,

servicing and maintenance of the boom would pose a very substantial problem

area.
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CHARACTERISTICS
i BOOM PERFORMS COMPLETE TANK EXCHANGE SEQUENCE

FROM OV TO RACK-MOUNTED OPD TANKS
ii REMOTE CONTROL FROM OV

Figure 2-6. Alternate Configuration, Modular Concept
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3. COMPARISON OF CONCEPTUAL CONFIGURATIONS

3. i1 INTRODUCTION

Prior to performing the hazards analysis, an overall evaluation of the con-

ceptual configurations was made to determine the advantages and disadvantages

of each with respect to both safety hazards and operational features. The

results of the evaluation are discussed briefly in the following paragraphs.

3.2 INTEGRAL CONCEPT

3.2.1 Advantages

The basic advantages of this concept is that it eliminates the complex mani-

folding and valving required for the semimodular concept. Also the OPD could

be resupplied by a dedicated tanker which would improve the propellant pay-

load capability of the resupply OV.

Several resupply options are available for this concept. Of these options,

the probe and drogue and the modular concepts would tend to minimize any

effects of instability or other differential movement between the vehicles.

Of these two, the modular concept appears more desirable since the resupply

OV would stand off at a safe distance throughout the refueling cycle.

3. 2. 2 Disadvantages

The major disadvantage of the integral concept is the requirement for pro-

pellant phase control, pressurization, and pumping during the propellant

transfer process. This process could account for the largest number of

potential malfunctions which might result in safety hazard(s).

Another undesirable feature of this approach is that a single tank rupture or

failure could cause loss not only of the entire system but, possibly the OPD

itself. The use of multiple tanks strapped together, with the necessary

associated manifolding and valving, could reduce the probability of this

3-1



occurrence; however, this approach would negate the basic advantage of the

integral concept.

Although the probe and drogue resupply method would provide separation

between the OPD and resupply OV, the complexity of the system and vulner-

ability to rupture of the connecting line seem at this point to outweigh the

advantages.

3.3. SEMIMODULAR CONCEPT

3.3.1 Advantages

There are two primary advantages to the semimodular concept: (i) no pro-

pellant flow would be required to resupply the OPD; since propellants would

not be required to flow during resupply operations, the need for phase con-

trol, pressurization, and pumping, that is considered a major disadvantage

with the integral system, would be eliminated; (ii) the increased operational

flexibility offered by this concept; the OPD could transfer propellants to

the user OV via flow transfer from bulk storage tanks or tank exchange as

would occur in the modular concept. For the latter method to be used, the

specialized propellant tanks used with the modular OPD would have to replace

the bulk storage tanks provided in that concept.

3.3.2 Disadvantages

The additional complexity of the multiple docking and manifold system could

increase the possibility of failure which might affect system safety.

3.4 MODULAR CONCEPT

3.4. 1 Advantages

A distinct advantage of this configuration would be that no flow transfer of

propellants would be required and, therefore, the propellant flow transfer

subsystems would be eliminated. As a result, the basic OPD is the least

complex of the concepts studied.
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3.4.2 Disadvantages

The propellant tank modules used with this configuration would contain both

the fuel and the oxidizer. Most of the data reviewed indicated that a tank-

within-a-tank configuration or a single tank with a common bulkhead configura-

tion could be used for these dual propellant modules; single point failure of

the bulkhead or inner tank wall would allow propellants to mix, resulting in

potential fire or explosion, i.e., catastrophic failure.

Extensive maneuvering of the user OV would be required in the vicinity of

the OPD. The user OV would be required to dock at the OPD, disengage the

empty tank, maneuver to and dock with a full tank.
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4. HAZARDS ANALYSIS

4. 1 GENERAL

A qualitative approach was used throughout the analysis which was divided into

three categories: system, components within systems, and interfaces between

the systems. Although the safety hazards for three different OPD configurations

were considered, many of the hazards identified are applicable to several of

them. This results from the fact that some subsystems and operating procedures

are common to two or more of the concepts, e. g.: (i) the flow transfer of pro-

pellants from the OPD to the user OV would employ the same subsystems and

operational procedures in both the integral and semi-modular concepts; (ii)

the docking mechanism and its operation are common to all concepts.

4. 2 HAZARDS ANALYSIS FORMAT

Table 4-1 shows the form utilized for the hazard analysis. The following

paragraphs contain a description of each column on the form.

4. 2. 1 Nomenclature

This column serves two functions: (i) to give the category of the analysis, i. e.,

system, component, or interface; (ii) to identify the specific item within the

category and give a brief description of its function(s).

4. 2.2 Failure Mode

The entries in this column describe briefly the manner in which the equipment

malfunctions. The failure modes in this analysis only describe possible

unsatisfactory performance without reference to probability of occurrence or

confidence in the probability.

4. 2. 3 Effect of Failure

Since crew safety is a primary concern, the effects of failures indicated in this

column are those representing safety hazards to the crews of either the resupply

or user OVs. In the case of components, any effect(s) on crew safety may be

indirect one(s).
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4. 2. 4 Hazard Classification

This column classifies the effect(s) of the failure on OPD operation according

to the standard NASA Hazard categories. The hazard categories are contained

in Appendix C for the convenience of the reader.

4. 2. 5 Design and Procedural Guidelines

This column contains two subheadings; preventive and remedial. The data

contained in the preventive category provide guidelines for inputs to engineered-

in design and procedural requirements that will enhance system safety. Where

applicable, the remedial column contains inputs for contingency operation(s)

should failure(s) occur.

4. 3 ANALYSIS OF SYSTEMS

4. 3. 1 Propellant Storage Tank System

4. 3. 1. 1 Functional Discription

The propellant storage tank system consists of the propellant tank proper and

all associated components, such as valving, fluid condition sensing meters,

etc. (See Figure 4-1 for typical integral system tank schematic.) The primary

function of the propellant tanks is to store (maintain) and condition the propellants

Both hydrogen and oxygen use autogenous pressurization, and, conceptually, the

tanks are identical except for their respective sizes. The propellant tanks

store propellants in a zero-g condition.

4. 3. 1.2 Hazard Analysis

The major hazard associated with the propellant tanks is the mixing of the

propellants which can result in a potentially explosive condition. This and other

hazards are analyzed in Tables 4-2, 4-3, and 4-4.

4. 3. 2 Secondary Propulsion System (SPS)

4. 3. 2. 1 Functional Description

The secondary propulsion system (SPS) provides the necessary OPD acceleration

for phase control during propellant transfer. The required level of acceleration

4-3
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is on the order of 10-5 to 10 g's. A linear acceleration method was

selected for this application (see Appendix A). The basic components within

the SPS shown in Figure 4-2 and Table 4-5 are: (i) the start tanks which are

capillary retention devices capable of propellant feed in a zero-g environment;

and (ii) the engine thrusters. After acceleration is effected with feed from the

start tanks, SPS propellants are obtained from the main tanks to sustain the

required level of acceleration for the duration of the propellant transfer

operation.

4. 3. 2. 2 Hazard Analysis

The primary failure modes of the SPS are its inability to control acceleration

and its inability to effect acceleration; in either case, the result would be the

nontransfer of propellants. In addition, the former could result in not being

able to uncouple the affected OV from the OPD. These hazards are discussed

further in Table 4-6.

4. 3. 3 Pressurization System

4. 3. 3. 1 Functional Description

The pressurization system provides the necessary net positive suction head

(NPSH) of propellant settling to effect pump transfer. The system is an

autogeneous warm, gas-pressurization system and is also a bootstrap system

where propellant is taken downstream from the transfer pump and passed

through a vaporizer. The primary components in the pressurization system

are the heat exchangers and the pressure- and flow-regulating valves,

Figure 4-3 and Table 4-7.

4. 3. 3.2 Hazard Analysis

A hazard associated with the pressurization system (see Table 4-8) is

uncontrolled overpressurization of the donor tank which cannot be relieved by

the tank pressure relief system. The result of such a failure would be a

propellant tank explosion with possible failure of the entire OPD.
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Table 4-5. Secondary Propulsion System Start Tanks

i. Provides OPD Linear Acceleration to Settle Liquid

2. Start Tanks

a. Capable of zero-g operation

b. Fed from propellant tank

3. Components

a. Pumps

b. Flowmeters

c. Valves

d. Heat exchangers

i) Heat propellants

2) Liquid/vapor interface

e. Combustion chambers

4. Interfaces

a. Propellant tanks

b. Gas generator
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Table 4-7. OPD Pressurization System

1. Provides NPSH to Propellants

2. Oxygen

a. Helium Pressurization

1) Stored high pressure helium

2) He heater to -500 R

b. Components

i 1) High pressure helium tank

2) Valves

3) Heat exchangers

4) Pressure/temperature sensors

c. Interfaces

1) Oxygen tank

2) Gas generator

3. Hydrogen

d. Hydrogen Pressurization

1) bled from main tank

2) H 2 heated to - 500 R

e. Components

1) Valves

2) Pump

3) Flowmeter

4) Heat exchanger

5) Pressure/temperature sensor

f. Interfaces

1) Hydrogen tank

2) Gas generator
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Gas Generator System (GGS)

4. 3. 4. 1 Functional Description

The gas generator provides thermal energy to the pressurization system and to

the secondary propulsion system. It is basically a combustion canister using

oxygen and hydrogen as reactants to generate thermal energy. The hot gas

products are passed through heat exchangers where pressurant gas and SPS

propellants are heated. The primary components within the gas generator

system are the combustion canister and the heat exchangers; a schematic of

the system is presented in Figure 4-4 and a listing of the components is in

Table 4-9.

4. 3. 4. 2 Hazard Analysis

The major hazards associated with this system are the loss of oxidizer/fuel

mixture control and the leakage of combustion gas products into the pressuri-

zation system. These hazards are listed in Table 4-10.

4. 3. 5 Vent System

4. 3. 5. 1 Functional Description

The propellant tank vent system has a three-fold function: (i) relieve excessive

propellant tank pressure caused by heat leaks into the tank; (ii) dump purge gas

during a purging operation; and (iii) regulate tank pressure during a propellant

transfer operation. The principle of thermodynamic conversion is utilized in

the vent system to ensure that only vapors are vented. A schematic depicting

the major components in the system is shown in Figure 4-5 and a listing of the

components is in Table 4-11.

Initial venting of the storage tanks releases both vapor and a quantity of liquid

propellant. The liquid and vapor are separated after passing through the

relief valve. The vapor goes directly to the vent branch of the system. The

liquid is converted to a vapor by diverting it through a throttling valve and heat

exchanger for use in cooling the main tanks; the resulting vapor goes to the vent

4-15
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Table 4-9. Gas Generator System

1. Provides Thermal Energy to Gas Generator System (GGS),
Secondary Propulsion System(SPS), and
Pressurization System

2. Initial Reactants from Vent System

3. After Start of SPS, Propellant Bled from Main Tanks
4. Components

a. Valve s

b. Pumps

c. Flowmeters

d. Heat exchangers

e. High pressure vent storage tanks

f. Combustion canister

5. Interfaces

a. Propellant tanks

b. Vent system

c. Pressurization system

d. SPS
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Table 4-ii1. OPD Vent System

1. Provides Propellant Tank Pressure Relief

2. Zero-g Vapor Venting

3. Thermodynamic Liquid/Vapor Separator

4. Vented Vapor Stored in GG Accumulators

5. Components

a. Valve s

b. Heat exchangers

c. Overboard dump

d. Pump

e. Integrating flowmeter

6. Interfaces

a. Propellant tank

b. Gas generator
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branch of the system. In the vent branch, the vapors flow through an integrating

flow meter which records the propellant loss due to venting. The vapors are

subsequently pumped to storage accumulators and used for the initial start of

the gas generator; the excess is vented overboard.

4. 3. 5. 2 Hazard Analysis

Table 4-12 contains the hazard analysis for this system. The major hazard

associated with the vent system is its failure in either the open or closed

position. The vent system should provide both redundancy and backup in the

event of a failure. Manual override capability should also be incorporated so

that portions of the systems can be isolated.

4. 3. 6 Docking/Interface Mating System

4. 3. 6. 1 Functional Description

The purpose of this system is to secure the resupply or user OVs to the OPD

during propellant transfer operations. The system also provides the capability

for mating the propellant transfer interfaces.

The primary components of the system are a universal docking adapter, locking

latches, and transfer system interface connectors. The docking adapter is

compatible with all vehicles servicing or being serviced by the OPD. The

mechanism provides vehicle alignment in both axial and angular directions to

facilitate docking. A series of hydraulic latches is mounted on the adapter

to lock the vehicles together at completion of the docking operation. The trans-

fer interface is comprised of the fluid and electrical connectors necessary to

the propellant transfer operations.

Since the details of the mating/transfer operations vary slightly for the different

concepts and modes of operation, only a brief generalized description will be

given here; a more detailed discussion occurs in Appendix B.
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Figure 4-6 shows the basic steps in the docking/interface mating procedure.

When the docking adapter is not in use, it is stored in the retracted position.

As a vehicle approaches the OPD, the adapter is extended for the docking phase.

When the vehicles are docked and the locking latches secured, the adapter is

retracted. This properly positions the vehicle with respect to the OPD and

enables the transfer interface connectors to be mated. When the propellant

transfer is complete, the docking/mating procedures are reversed.

4. 3. 6. 2 Hazard Analysis

The following hazards analysis is divided into two sections. Tables 4-13

through 4-19 apply to both the integral and semimodular concepts. Table 4-20

applies to the modular concept.

4.4 COMPONENTS

Although the various systems have individual system-peculiar components, many

of the components are common to all of the systems. Consequently, the com-

ponents were considered collectively and not as part of a system. On a compon-

ent level basis, failure modes include electrical shortage, mechanical component

failures, valve failure in the open/closed positions, etc. An analysis of the

more critical components is presented in Table 4-20. Although none of the

component failures per se will result in a catastrophic failure (except perhaps

for the mixing of the propellant within the GG heat exchangers), the domino

theory is very applicable to the propagation of failures from a component.

Therefore, although a failure of a single component may appear to be relatively

inconsequential in terms of a hazard classification, all due precautions must be

used to prevent or remedy the possibility of a component failure from propagating

to a total system failure.

4.5 INTERFACES

Table 4-21 presents a matrix identifying the interfaces among the various

systems; all but the power system interface were considered. The docking

mechanism interface was discussed in paragraph 4. 3. 6.
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Table 4-22 delineates the interfaces and the failure modes which can exist

across the interfaces. Generally, the most common type of failure is the

nonscheduled transfer of propellant, electrical energy, etc. across an

interface.
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5. SUMMARY AND CONCLUSIONS

Three basic concepts of an OPD were assumed and evaluated to determine their

respective safety hazards. Emphasis was placed on propellant transfer

operations to and from the OPD, since these are the only occasions where

manned vehicles would be involved in OPD operations. The concepts studied

are summarized in Table 5-i.

The study indicates that a modular mode of depot resupply is desirable

regardless of the OPD configuration. This resupply mode requires no flow

transfer to resupply either the semimodular or modular OPD. For the

integral OPD, the modular method of resupply allows the resupply vehicle

to move to a safe distance during the transfer operations. However, in the

case of the modular OPD, the resupply module is considered to contain both

LO
2

and LH 2 , which necessitates the use of a common bulkhead type tank.

The possibility of rupturing this bulkhead and the catastrophic nature of

such a failure, either fire or explosion, weigh heavily against the modular

depot as a candidate configuration.

When servicing a user OV, the integral or semimodular OPD utilizes a

propellant flow system to transfer propellants. The primary subsystems

required for the transfer are ullage control, pressurization, and fluid flow,

which are provided by linear accleration, liquid/vapor conversion, and pump

transfer, respectively. The level of hazard is the same for either of these

two concepts during this phase of operation.

The modular OPD transfers propellants by direct tank exchange. Direct

tank exchange requires the user OV to dock its empty propellant tanks at the

OPD and then maneuver with an auxiliary propulsion system to acquire a

propellant tank from the OPD. The additional maneuvering required'of the

user OV in close proximity to the OPD, plus the use of common bulkhead

type propellant tanks which are susceptible to damage resulting in catastrophic
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failure, as described above, raises the hazard level of the modular OPD above

that for either the integral or semimodular OPD.

A summary of typical catastrophic and critical safety hazards is presented

in Tables 5-2 and 5-3, respectively.

Of the threee concepts, the semimodular appears to provide the best opera-

tional advantage and lowest safety risk. This concept does not require a

flow transfer of propellants to resupply the OPD, as does the integral concept.

Since propellant flow is not required, the risk to the resupply vehicle is

minimized. Further, since single propellants, either LO2 or LHZ, are

stored in individual modules, the likelihood of a single tank failure's incapac-

itating the OPD is minimized. Rupturing a single module will not result in

a catastrophic failure due to propellant mixing, as could occur with the tanks

used in the modular concept. Additionally a ruptured module can be isolated

from the system at the transfer manifold. This is in contrast with the single

tank storage of each propellant in the integral concept wherein a single tank

failure results in the loss of all OPD operations.
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